143 research outputs found

    Ballistic Coalescence Model

    Full text link
    We study statistical properties of a one dimensional infinite system of coalescing particles. Each particle moves with constant velocity ±v\pm v towards its closest neighbor and merges with it upon collision. We propose a mean-field theory that confirms a t1t^{-1} concentration decay obtained in simulations and provides qualitative description for the densities of growing, constant, and shrinking inter-particle gaps.Comment: 4 pages, 2 column Revtex, 5 figures include

    Wealth Distributions in Models of Capital Exchange

    Full text link
    A dynamical model of capital exchange is introduced in which a specified amount of capital is exchanged between two individuals when they meet. The resulting time dependent wealth distributions are determined for a variety of exchange rules. For ``greedy'' exchange, an interaction between a rich and a poor individual results in the rich taking a specified amount of capital from the poor. When this amount is independent of the capitals of the two traders, a mean-field analysis yields a Fermi-like scaled wealth distribution in the long-time limit. This same distribution also arises in greedier exchange processes, where the interaction rate is an increasing function of the capital difference of the two traders. The wealth distribution in multiplicative processes, where the amount of capital exchanged is a finite fraction of the capital of one of the traders, are also discussed. For random multiplicative exchange, a steady state wealth distribution is reached, while in greedy multiplicative exchange a non-steady power law wealth distribution arises, in which the support of the distribution continuously increases. Finally, extensions of our results to arbitrary spatial dimension and to growth processes, where capital is created in an interaction, are presented.Comment: 10 pages, RevTeX, 4 figures, to be submitted to PR

    Propagation of fluctuations in interaction networks governed by the law of mass action

    Full text link
    Using an example of physical interactions between proteins, we study how perturbations propagate in interconnected networks whose equilibrium state is governed by the law of mass action. We introduce a comprehensive matrix formalism which predicts the response of this equilibrium to small changes in total concentrations of individual molecules, and explain it using a heuristic analogy to a current flow in a network of resistors. Our main conclusion is that on average changes in free concentrations exponentially decay with the distance from the source of perturbation. We then study how this decay is influenced by such factors as the topology of a network, binding strength, and correlations between concentrations of neighboring nodes. An exact analytic expression for the decay constant is obtained for the case of uniform interactions on the Bethe lattice. Our general findings are illustrated using a real biological network of protein-protein interactions in baker's yeast with experimentally determined protein concentrations.Comment: 4 pages; 2 figure

    Binaries and core-ring structures in self-gravitating systems

    Full text link
    Low energy states of self-gravitating systems with finite angular momentum are considered. A constraint is introduced to confine cores and other condensed objects within the system boundaries by gravity alone. This excludes previously observed astrophysically irrelevant asymmetric configurations with a single core. We show that for an intermediate range of a short-distance cutoff and small angular momentum, the equilibrium configuration is an asymmetric binary. For larger angular momentum or for a smaller range of the short distance cutoff, the equilibrium configuration consists of a central core and an equatorial ring. The mass of the ring varies between zero for vanishing rotation and the full system mass for the maximum angular momentum LmaxL_{max} a localized gravitationally bound system can have. The value of LmaxL_{max} scales as ln(1/x0)\sqrt{\ln(1/x_0)}, where x0x_0 is a ratio of a short-distance cutoff range to the system size. An example of the soft gravitational potential is considered; the conclusions are shown to be valid for other forms of short-distance regularization.Comment: 6 pages, 3 figure

    Particle Systems with Stochastic Passing

    Full text link
    We study a system of particles moving on a line in the same direction. Passing is allowed and when a fast particle overtakes a slow particle, it acquires a new velocity drawn from a distribution P_0(v), while the slow particle remains unaffected. We show that the system reaches a steady state if P_0(v) vanishes at its lower cutoff; otherwise, the system evolves indefinitely.Comment: 5 pages, 5 figure

    Ensemble inequivalence: A formal approach

    Full text link
    Ensemble inequivalence has been observed in several systems. In particular it has been recently shown that negative specific heat can arise in the microcanonical ensemble in the thermodynamic limit for systems with long-range interactions. We display a connection between such behaviour and a mean-field like structure of the partition function. Since short-range models cannot display this kind of behaviour, this strongly suggests that such systems are necessarily non-mean field in the sense indicated here. We further show that a broad class of systems with non-integrable interactions are indeed of mean-field type in the sense specified, so that they are expected to display ensemble inequivalence as well as the peculiar behaviour described above in the microcanonical ensemble.Comment: 4 pages, no figures, given at the NEXT2001 conference on non-extensive thermodynamic

    On the evolution of decoys in plant immune systems

    Full text link
    The Guard-Guardee model for plant immunity describes how resistance proteins (guards) in host cells monitor host target proteins (guardees) that are manipulated by pathogen effector proteins. A recently suggested extension of this model includes decoys, which are duplicated copies of guardee proteins, and which have the sole function to attract the effector and, when modified by the effector, trigger the plant immune response. Here we present a proof-of-principle model for the functioning of decoys in plant immunity, quantitatively developing this experimentally-derived concept. Our model links the basic cellular chemistry to the outcomes of pathogen infection and resulting fitness costs for the host. In particular, the model allows identification of conditions under which it is optimal for decoys to act as triggers for the plant immune response, and of conditions under which it is optimal for decoys to act as sinks that bind the pathogen effectors but do not trigger an immune response.Comment: 15 pages, 6 figure

    Nonconcave entropies from generalized canonical ensembles

    Get PDF
    It is well-known that the entropy of the microcanonical ensemble cannot be calculated as the Legendre transform of the canonical free energy when the entropy is nonconcave. To circumvent this problem, a generalization of the canonical ensemble which allows for the calculation of nonconcave entropies was recently proposed. Here, we study the mean-field Curie-Weiss-Potts spin model and show, by direct calculations, that the nonconcave entropy of this model can be obtained by using a specific instance of the generalized canonical ensemble known as the Gaussian ensemble.Comment: 5 pages, RevTeX4, 3 figures (best viewed in ps

    Cliques and duplication-divergence network growth

    Full text link
    A population of complete subgraphs or cliques in a network evolving via duplication-divergence is considered. We find that a number of cliques of each size scales linearly with the size of the network. We also derive a clique population distribution that is in perfect agreement with both the simulation results and the clique statistic of the protein-protein binding network of the fruit fly. In addition, we show that such features as fat-tail degree distribution, various rates of average degree growth and non-averaging, revealed recently for only the particular case of a completely asymmetric divergence, are present in a general case of arbitrary divergence.Comment: 7 pages, 6 figure

    Generalized canonical ensembles and ensemble equivalence

    Get PDF
    This paper is a companion article to our previous paper (J. Stat. Phys. 119, 1283 (2005), cond-mat/0408681), which introduced a generalized canonical ensemble obtained by multiplying the usual Boltzmann weight factor eβHe^{-\beta H} of the canonical ensemble with an exponential factor involving a continuous function gg of the Hamiltonian HH. We provide here a simplified introduction to our previous work, focusing now on a number of physical rather than mathematical aspects of the generalized canonical ensemble. The main result discussed is that, for suitable choices of gg, the generalized canonical ensemble reproduces, in the thermodynamic limit, all the microcanonical equilibrium properties of the many-body system represented by HH even if this system has a nonconcave microcanonical entropy function. This is something that in general the standard (g=0g=0) canonical ensemble cannot achieve. Thus a virtue of the generalized canonical ensemble is that it can be made equivalent to the microcanonical ensemble in cases where the canonical ensemble cannot. The case of quadratic gg-functions is discussed in detail; it leads to the so-called Gaussian ensemble.Comment: 8 pages, 4 figures (best viewed in ps), revtex4. Changes in v2: Title changed, references updated, new paragraph added, minor differences with published versio
    corecore